Mineralocorticoid receptor blocker eplerenone reduces pain behaviors in vivo and decreases excitability in small-diameter sensory neurons from local inflamed dorsal root ganglia in vitro.
نویسندگان
چکیده
BACKGROUND Inflammation of the dorsal root ganglia (DRG) may contribute to low back pain, postherpetic neuralgia, and neuropathic pain. The mineralocorticoid receptor (MR) plays a proinflammatory role in many nonrenal tissues, but its role in peripheral pain at the DRG level is not well studied. METHODS Local inflammation of the L5 DRG with the immune activator zymosan rapidly leads to mechanical hypersensitivity and increased excitability of sensory neurons. Using this pain model, the authors applied the MR antagonist eplerenone locally to the inflamed DRG. Excitability of small-diameter sensory neurons was examined in acute primary culture by using patch clamp techniques. RESULTS Local eplerenone significantly reduced the mechanical hypersensitivity and shortened its duration. The same dose was ineffective systemically. Immunohistochemical studies showed the MR was present in most neurons and rapidly translocated to the nucleus 1 day after local DRG inflammation. Activation of satellite glia (defined by expression of glial fibrillary acidic protein) in the inflamed DRG was also reduced by local eplerenone. Increased excitability of small-diameter sensory neurons 1 day after inflammation could be observed in vitro. Eplerenone applied in vitro (8-12 h) could reverse this increased excitability. Eplerenone had no effect in neurons isolated from normal, uninflamed DRG. The MR agonist aldosterone (10 nM) applied in vitro increased excitability of neurons isolated from normal DRG. CONCLUSIONS The MR may have a pronociceptive role in the DRG. Some of its effects may be mediated by neuronal MR. The MR may represent a novel therapeutic target in some pain syndromes.
منابع مشابه
Role of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat
Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...
متن کاملA new "kine" of pain: MCP-1 and sensory neuron excitability. Focus on "MCP-1 enhances excitability of nociceptive neurons in chronically compressed dorsal root ganglia".
In 1998, Hu and Xing (1998) developed a method for nerve injury by chronically compressed dorsal root ganglia (CCD). Robert LaMotte and his colleagues at Yale have utilized this technique to explore the consequences of injury on nociception and excitability of primary sensory neurons. This elegant model closely resembles common compressive injuries that occur in people and allows investigations...
متن کاملBack pain and the mineralocorticoid receptor: is there a connection?
951 November 2012 W HEN the key words “back pain” and “steroid” are encountered together, we implicitly picture an epidural steroid injection utilizing a glucocorticoid with or without a local anesthetic. The use of glucocorticoids as a therapeutic intervention to reduce painful radicular symptoms (presumably through a reduction of inflammation) remains an overwhelming cornerstone of interventi...
متن کاملLong-term IL-1β exposure causes subpopulation-dependent alterations in rat dorsal root ganglion neuron excitability.
The effect of interleukin-1β (IL-1β) on the electrical properties of sensory neurons was assessed at levels and exposure times comparable to those found in animal models of neuropathic pain. Experiments involved whole cell current-clamp recordings from rat dorsal root ganglion (DRG) neurons in defined-medium, neuron-enriched cultures. Five- to six-day exposure to 100 pM IL-1β produced subpopula...
متن کاملIncreased excitability and spontaneous activity of rat sensory neurons following in vitro stimulation of sympathetic fiber sprouts in the isolated dorsal root ganglion.
Many chronic pain conditions including complex regional pain syndrome are exacerbated by sympathetic activity. In animal models, sympathetic fibers sprout into the dorsal root ganglia (DRG) after peripheral nerve injury, forming abnormal connections with sensory neurons. However, functional studies of sympathetic-sensory connections have been limited largely to in vivo studies. This study descr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 117 5 شماره
صفحات -
تاریخ انتشار 2012